Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2315985121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377192

RESUMO

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.


Assuntos
Antígenos de Histocompatibilidade Classe I , Hominidae , Animais , Humanos , Proteínas Virais/metabolismo , Citomegalovirus , Hominidae/genética , Hominidae/metabolismo , Linhagem Celular , Antígenos de Histocompatibilidade/metabolismo , Antígenos HLA-A/metabolismo , Peptídeos/metabolismo
2.
Mol Biol Evol ; 38(1): 96-107, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32722766

RESUMO

Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or "reactivation" of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa.


Assuntos
Herpesvirus Humano 6/genética , Migração Humana , Filogenia , África , Humanos , Filogeografia
3.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869419

RESUMO

In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Humanos , Memória Imunológica/imunologia
5.
Viruses ; 11(12)2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801268

RESUMO

Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.


Assuntos
Genoma Viral/genética , Infecções por Roseolovirus/virologia , Roseolovirus/fisiologia , Animais , Antivirais/uso terapêutico , Humanos , Camundongos , Roseolovirus/genética , Roseolovirus/imunologia , Roseolovirus/patogenicidade , Infecções por Roseolovirus/tratamento farmacológico , Infecções por Roseolovirus/epidemiologia , Infecções por Roseolovirus/transmissão , Suínos , Integração Viral , Latência Viral
6.
PLoS Pathog ; 15(9): e1008040, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527904

RESUMO

To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with ß2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome.


Assuntos
Citomegalovirus/imunologia , Citomegalovirus/metabolismo , Antígenos HLA-B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Apresentação de Antígeno , Linhagem Celular , Citomegalovirus/genética , Degradação Associada com o Retículo Endoplasmático/imunologia , Antígenos HLA-A/metabolismo , Antígenos HLA-B/química , Células HeLa , Humanos , Evasão da Resposta Imune , Ligantes , Modelos Imunológicos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Virais/química , Proteínas Virais/genética
7.
Front Microbiol ; 10: 1408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293546

RESUMO

Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome.

8.
Nat Methods ; 15(5): 363-366, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529017

RESUMO

Ribosome profiling has been used to predict thousands of short open reading frames (sORFs) in eukaryotic cells, but it suffers from substantial levels of noise. PRICE (https://github.com/erhard-lab/price) is a computational method that models experimental noise to enable researchers to accurately resolve overlapping sORFs and noncanonical translation initiation. We experimentally validated translation using major histocompatibility complex class I (MHC I) peptidomics and observed that sORF-derived peptides efficiently enter the MHC I presentation pathway and thus constitute a substantial fraction of the antigen repertoire.


Assuntos
Biologia Computacional , Peptídeos/metabolismo , Proteômica/métodos , Ribossomos/fisiologia , Genes MHC Classe I , Modelos Biológicos , Biossíntese de Proteínas , Pegadas de Proteínas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...